Use prime factor util in 12 and move divisors code into util
This commit is contained in:
parent
40158db6a1
commit
39030caf40
66
0012.py
66
0012.py
@ -1,50 +1,33 @@
|
|||||||
|
# Highly divisible triangular number
|
||||||
|
# Problem 12
|
||||||
|
# The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
|
||||||
|
|
||||||
|
# 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
|
||||||
|
|
||||||
|
# Let us list the factors of the first seven triangle numbers:
|
||||||
|
|
||||||
|
# 1: 1
|
||||||
|
# 3: 1,3
|
||||||
|
# 6: 1,2,3,6
|
||||||
|
# 10: 1,2,5,10
|
||||||
|
# 15: 1,3,5,15
|
||||||
|
# 21: 1,3,7,21
|
||||||
|
# 28: 1,2,4,7,14,28
|
||||||
|
# We can see that 28 is the first triangle number to have over five divisors.
|
||||||
|
|
||||||
|
# What is the value of the first triangle number to have over five hundred divisors?
|
||||||
|
|
||||||
from collections import Counter
|
from collections import Counter
|
||||||
from functools import reduce
|
from functools import reduce
|
||||||
|
import util
|
||||||
|
|
||||||
def find_prime_factors(n):
|
target = 76576500
|
||||||
factors = []
|
|
||||||
|
|
||||||
i = 2
|
|
||||||
|
|
||||||
while i <= n / i:
|
|
||||||
if n % i == 0:
|
|
||||||
factors.append(i)
|
|
||||||
n = int(n / i)
|
|
||||||
else:
|
|
||||||
i += 1
|
|
||||||
|
|
||||||
factors.append(n)
|
|
||||||
|
|
||||||
return factors
|
|
||||||
|
|
||||||
def find_divisers(num):
|
|
||||||
def recurse(tuples, product = 1):
|
|
||||||
factor, count = tuples[0]
|
|
||||||
|
|
||||||
for i in range(0, count + 1):
|
|
||||||
if (i != 0):
|
|
||||||
product = product * factor
|
|
||||||
|
|
||||||
if (len(tuples) > 1):
|
|
||||||
recurse(tuples[1:], product)
|
|
||||||
else:
|
|
||||||
result.append(product)
|
|
||||||
|
|
||||||
factors = find_prime_factors(num)
|
|
||||||
|
|
||||||
|
|
||||||
recurse(list(Counter(factors).items()))
|
|
||||||
|
|
||||||
result.sort()
|
|
||||||
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
for i in range(1, 100000):
|
for i in range(1, 100000):
|
||||||
result = reduce(lambda x,y: x + y, list(range(1, i + 1)))
|
result = reduce(lambda x,y: x + y, list(range(1, i + 1)))
|
||||||
# divisers = find_divisers(result)
|
# divisers = find_divisers(result)
|
||||||
factors = find_prime_factors(result)
|
factors = util.find_prime_factors(result)
|
||||||
|
|
||||||
total_count = 1
|
total_count = 1
|
||||||
|
|
||||||
@ -52,7 +35,8 @@ for i in range(1, 100000):
|
|||||||
total_count *= count + 1
|
total_count *= count + 1
|
||||||
|
|
||||||
if (total_count >= 500):
|
if (total_count >= 500):
|
||||||
print(i)
|
# print(i)
|
||||||
|
# print(total_count)
|
||||||
print(result)
|
print(result)
|
||||||
print(total_count)
|
print(result == target)
|
||||||
break
|
break
|
||||||
|
|||||||
24
util.py
24
util.py
@ -1,5 +1,29 @@
|
|||||||
|
from collections import Counter
|
||||||
from functools import reduce
|
from functools import reduce
|
||||||
|
|
||||||
|
def divisors(num):
|
||||||
|
result = []
|
||||||
|
def recurse(tuples, product = 1):
|
||||||
|
factor, count = tuples[0]
|
||||||
|
|
||||||
|
for i in range(0, count + 1):
|
||||||
|
if (i != 0):
|
||||||
|
product = product * factor
|
||||||
|
|
||||||
|
if (len(tuples) > 1):
|
||||||
|
recurse(tuples[1:], product)
|
||||||
|
else:
|
||||||
|
result.append(product)
|
||||||
|
|
||||||
|
factors = find_prime_factors(num)
|
||||||
|
|
||||||
|
recurse(list(Counter(factors).items()))
|
||||||
|
|
||||||
|
result.sort()
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
def find_largest_prime_factor(n):
|
def find_largest_prime_factor(n):
|
||||||
prime_factor = 1
|
prime_factor = 1
|
||||||
factors.append(prime_factor)
|
factors.append(prime_factor)
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user